1,976 research outputs found

    Site participation in the small community experiment

    Get PDF
    The Small Community Solar Thermal Experiment, planned to test a small, developmental solar thermal power plant in a small community application, is assessed. The baseline plan is to install a field of parabolic dishes with distributed generation to provide 1 MWe of experimental power. Participation by the site proposer is an integral element of the experiment; the proposer will provide a ten-acre site, a connection to the electrical distributional system serving the small community, and various services. In addition to the primary participant, site study efforts may be pursued at as many as five alternative sites

    A New Two-Parameter Family of Potentials with a Tunable Ground State

    Full text link
    In a previous paper we solved a countably infinite family of one-dimensional Schr\"odinger equations by showing that they were supersymmetric partner potentials of the standard quantum harmonic oscillator. In this work we extend these results to find the complete set of real partner potentials of the harmonic oscillator, showing that these depend upon two continuous parameters. Their spectra are identical to that of the harmonic oscillator, except that the ground state energy becomes a tunable parameter. We finally use these potentials to analyse the physical problem of Bose-Einstein condensation in an atomic gas trapped in a dimple potential.Comment: 15 pages, 5 figure

    FPT is Characterized by Useful Obstruction Sets

    Full text link
    Many graph problems were first shown to be fixed-parameter tractable using the results of Robertson and Seymour on graph minors. We show that the combination of finite, computable, obstruction sets and efficient order tests is not just one way of obtaining strongly uniform FPT algorithms, but that all of FPT may be captured in this way. Our new characterization of FPT has a strong connection to the theory of kernelization, as we prove that problems with polynomial kernels can be characterized by obstruction sets whose elements have polynomial size. Consequently we investigate the interplay between the sizes of problem kernels and the sizes of the elements of such obstruction sets, obtaining several examples of how results in one area yield new insights in the other. We show how exponential-size minor-minimal obstructions for pathwidth k form the crucial ingredient in a novel OR-cross-composition for k-Pathwidth, complementing the trivial AND-composition that is known for this problem. In the other direction, we show that OR-cross-compositions into a parameterized problem can be used to rule out the existence of efficiently generated quasi-orders on its instances that characterize the NO-instances by polynomial-size obstructions.Comment: Extended abstract with appendix, as accepted to WG 201

    Parameterizing by the Number of Numbers

    Full text link
    The usefulness of parameterized algorithmics has often depended on what Niedermeier has called, "the art of problem parameterization". In this paper we introduce and explore a novel but general form of parameterization: the number of numbers. Several classic numerical problems, such as Subset Sum, Partition, 3-Partition, Numerical 3-Dimensional Matching, and Numerical Matching with Target Sums, have multisets of integers as input. We initiate the study of parameterizing these problems by the number of distinct integers in the input. We rely on an FPT result for ILPF to show that all the above-mentioned problems are fixed-parameter tractable when parameterized in this way. In various applied settings, problem inputs often consist in part of multisets of integers or multisets of weighted objects (such as edges in a graph, or jobs to be scheduled). Such number-of-numbers parameterized problems often reduce to subproblems about transition systems of various kinds, parameterized by the size of the system description. We consider several core problems of this kind relevant to number-of-numbers parameterization. Our main hardness result considers the problem: given a non-deterministic Mealy machine M (a finite state automaton outputting a letter on each transition), an input word x, and a census requirement c for the output word specifying how many times each letter of the output alphabet should be written, decide whether there exists a computation of M reading x that outputs a word y that meets the requirement c. We show that this problem is hard for W[1]. If the question is whether there exists an input word x such that a computation of M on x outputs a word that meets c, the problem becomes fixed-parameter tractable

    Non-equilibrium Berezinskii-Kosterlitz-Thouless Transition in a Driven Open Quantum System

    Get PDF
    The Berezinskii-Kosterlitz-Thouless mechanism, in which a phase transition is mediated by the proliferation of topological defects, governs the critical behaviour of a wide range of equilibrium two-dimensional systems with a continuous symmetry, ranging from superconducting thin films to two-dimensional Bose fluids, such as liquid helium and ultracold atoms. We show here that this phenomenon is not restricted to thermal equilibrium, rather it survives more generally in a dissipative highly non-equilibrium system driven into a steady-state. By considering a light-matter superfluid of polaritons, in the so-called optical parametric oscillator regime, we demonstrate that it indeed undergoes a vortex binding-unbinding phase transition. Yet, the exponent of the power-law decay of the first order correlation function in the (algebraically) ordered phase can exceed the equilibrium upper limit -- a surprising occurrence, which has also been observed in a recent experiment. Thus we demonstrate that the ordered phase is somehow more robust against the quantum fluctuations of driven systems than thermal ones in equilibrium.Comment: 11 pages, 9 figure

    Unbinding of giant vortices in states of competing order

    Get PDF
    Funding: EPSRC (UK) via Grants No. EP/I031014/1 and No. EP/H049584/1.We consider a two-dimensional system with two order parameters, one with O(2) symmetry and one with O(M), near a point in parameter space where they couple to become a single O(2+M) order. While the O(2) sector supports vortex excitations, these vortices must somehow disappear as the high symmetry point is approached. We develop a variational argument which shows that the size of the vortex cores diverges as 1/root Delta and the Berezinskii-Kosterlitz-Thouless transition temperature of the O(2) order vanishes as 1/1n(1/Delta), where Delta denotes the distance from the high-symmetry point. Our physical picture is confirmed by a renormalization group analysis which gives further logarithmic corrections, and demonstrates full symmetry restoration within the cores.Publisher PDFPeer reviewe

    Letter graphs and geometric grid classes of permutations: characterization and recognition

    Full text link
    In this paper, we reveal an intriguing relationship between two seemingly unrelated notions: letter graphs and geometric grid classes of permutations. An important property common for both of them is well-quasi-orderability, implying, in a non-constructive way, a polynomial-time recognition of geometric grid classes of permutations and kk-letter graphs for a fixed kk. However, constructive algorithms are available only for k=2k=2. In this paper, we present the first constructive polynomial-time algorithm for the recognition of 33-letter graphs. It is based on a structural characterization of graphs in this class.Comment: arXiv admin note: text overlap with arXiv:1108.6319 by other author
    corecore